18.950 Handout 3. Existence and Uniqueness of Solutions to O.D.E.'s

Let $l \in (0, \infty]$, $R \in (0, \infty)$, $y_0 \in \mathbf{R}^n$ and $t_0 \in \mathbf{R}$. Suppose

$$F: (t_0 - l, t_0 + l) \times \overline{B}_R(y_0) \to \mathbf{R}^n$$

is a continuous function. Consider the first order O.D.E. initial value problem:

$$\frac{du}{dt} = F(t, u) \quad \text{and} \quad u(t_0) = y_0. \tag{(\star)}$$

In general, we cannot expect to find a solution to the system (\star) that exists for all t. e.g. for n = 1, if we take $F(t, u) = 1 + u^2$, $t_0 = 0$ and $y_0 = 0$, then the solution (which can be found by separation of variables) is $u(t) = \tan t$ which blows up as $t \to \pm \pi/2$. The theorem below gives sufficient conditions under which a unique solution to (\star) exists *locally* in some neighborhood of t_0 . Before stating the theorem, we need the following:

Definition. A map $f : \Omega \subseteq \mathbf{R}^m \to \mathbf{R}^n$ is said to be Lipschitz if there exists a number L such that $||f(x) - f(y)|| \leq L||x - y||$ for all $x, y \in \Omega$. The infimum of the set of such L is called the Lipschitz constant of f, denoted Lip f.

Theorem 1. Suppose F = F(t, y) as above is continuous. Suppose also that F is Lipschitz in the y variable uniformly for all $t \in (t_0 - l, t_0 + l)$. i.e. $||F(t, y_1) - F(t, y_2)|| \leq L||y_1 - y_2||$ for some $L \in (0, \infty)$ and for all $y_1, y_2 \in B_R(y_0)$ and all $t \in (t_0 - l, t_0 + l)$. Then there exists c > 0 such that the initial value problem (\star) has a unique solution u(t) for $t \in (t_0 - c, t_0 + c)$.

Proof. First note that by the fundamental theorem of calculus, u is a solution to (\star) in an interval $(t_0 - c, t_0 + c)$ if and only if

$$u(t) = y_0 + \int_{t_0}^t F(s, u(s))ds$$
(1)

for $t \in (t_0-c, t_0+c)$. Let $M = \max_{I \times \overline{B}_R(y_0)} |F(t, y)|$ where $I = [t_0-l_1, t_0+l_1]$, $l_1 = \min\{l/2, 1\}$. Set $c = \min\{l_1, \frac{R}{M}, \frac{1}{2L}\}$. For $u \in \mathcal{C}((t_0 - c, t_0 + c), \overline{B}_R(y_0))$ (equipped with the *sup* metric, see handout 2), define a function $\phi(u)$ by

$$\phi(u)(t) = y_0 + \int_{t_0}^t F(s, u(s)) ds.$$
 (2)

Note that $\phi(u)$ is continuous (in fact differentiable), and for all $t \in (t_0 - c, t_0 + c)$,

$$|\phi(u)(t) - y_0| \le M|t - t_0| \le Mc \le R.$$
(3)

Thus $\phi(u) \in \mathcal{C}((t_0 - c, t_0 + c), \overline{B}_R(y_0))$. Moreover, ϕ is a contraction because

$$\begin{aligned} |\phi(u)(t) - \phi(v)(t)| &\leq \left| \int_{t_0}^t F(t, u(t)) - F(t, v(t)) dt \right| \\ &= \left| \int_{t_0}^t L|u(t) - v(t)| dt \right| \\ &\leq L|t - t_0| \|u - v\|_{\sup} \leq \frac{1}{2} \|u - v\|_{\sup} \end{aligned}$$
(4)

for all $t \in (t_0 - c, t_0 + c)$ and hence

$$\|\phi(u) - \phi(v)\|_{\sup} \le \frac{1}{2} \|u - v\|_{\sup}.$$

Thus by the contraction mapping theorem, ϕ has a unique fixed point, which, by (1), is the desired unique solution to (\star) in the interval $(t_0 - c, t_0 + c)$.

Corollary 1. Suppose $F(t, y, x_1, \ldots, x_{m-1})$, where $t, y, x_i \in \mathbf{R}$, is a real valued function defined in some neighborhood of the point $(t_0, y_0, y_1, \ldots, y_{m-1}) \in \mathbf{R}^{m+1}$. If F continuous in all variables and Lipschitz in the variables y, x_1, \ldots, x_{m-1} , then the m^{th} -order O.D.E. initial value problem

$$\frac{d^m u}{dt^m} = F\left(t, u, \frac{du}{dt}, \dots, \frac{d^{m-1}u}{dt^{m-1}}\right),$$

$$u(t_0) = y_0,$$

$$\frac{du}{dt}(t_0) = y_1,$$

$$\vdots$$

$$\frac{d^{m-1}u}{dt^{m-1}}(t_0) = y_{m-1}$$

has a unique solution near $(t_0, y_0, y_1, \ldots, y_{m-1})$.