18.950 Handout 3. Existence and Uniqueness of Solutions to O.D.E.'s

Let $l \in(0, \infty], R \in(0, \infty), y_{0} \in \mathbf{R}^{n}$ and $t_{0} \in \mathbf{R}$. Suppose

$$
F:\left(t_{0}-l, t_{0}+l\right) \times \bar{B}_{R}\left(y_{0}\right) \rightarrow \mathbf{R}^{n}
$$

is a continuous function. Consider the first order O.D.E. initial value problem:

$$
\frac{d u}{d t}=F(t, u) \quad \text { and } \quad u\left(t_{0}\right)=y_{0}
$$

In general, we cannot expect to find a solution to the system (\star) that exists for all t. e.g. for $n=1$, if we take $F(t, u)=1+u^{2}, t_{0}=0$ and $y_{0}=0$, then the solution (which can be found by separation of variables) is $u(t)=\tan t$ which blows up as $t \rightarrow \pm \pi / 2$. The theorem below gives sufficient conditions under which a unique solution to (\star) exists locally in some neighborhood of t_{0}. Before stating the theorem, we need the following:

Definition. A map $f: \Omega \subseteq \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ is said to be Lipschitz if there exists a number L such that $\|f(x)-f(y)\| \leq L\|x-y\|$ for all $x, y \in \Omega$. The infimum of the set of such L is called the Lipschitz constant of f, denoted $\operatorname{Lip} f$.

Theorem 1. Suppose $F=F(t, y)$ as above is continuous. Suppose also that F is Lipschitz in the y variable uniformly for all $t \in\left(t_{0}-l, t_{0}+l\right)$. i.e. $\left\|F\left(t, y_{1}\right)-F\left(t, y_{2}\right)\right\| \leq L\left\|y_{1}-y_{2}\right\|$ for some $L \in(0, \infty)$ and for all $y_{1}, y_{2} \in B_{R}\left(y_{0}\right)$ and all $t \in\left(t_{0}-l, t_{0}+l\right)$. Then there exists $c>0$ such that the initial value problem (\star) has a unique solution $u(t)$ for $t \in\left(t_{0}-c, t_{0}+c\right)$.

Proof. First note that by the fundametal theorem of calculus, u is a solution to (\star) in an interval $\left(t_{0}-c, t_{0}+c\right)$ if and only if

$$
\begin{equation*}
u(t)=y_{0}+\int_{t_{0}}^{t} F(s, u(s)) d s \tag{1}
\end{equation*}
$$

for $t \in\left(t_{0}-c, t_{0}+c\right)$. Let $M=\max _{I \times \bar{B}_{R}\left(y_{0}\right)}|F(t, y)|$ where $I=\left[t_{0}-l_{1}, t_{0}+l_{1}\right]$, $l_{1}=\min \{l / 2,1\}$. Set $c=\min \left\{l_{1}, \frac{R}{M}, \frac{1}{2 L}\right\}$. For $u \in \mathcal{C}\left(\left(t_{0}-c, t_{0}+c\right), \bar{B}_{R}\left(y_{0}\right)\right)$ (equipped with the sup metric, see handout 2), define a function $\phi(u)$ by

$$
\begin{equation*}
\phi(u)(t)=y_{0}+\int_{t_{0}}^{t} F(s, u(s)) d s \tag{2}
\end{equation*}
$$

Note that $\phi(u)$ is continuous (in fact differentiable), and for all $t \in$ $\left(t_{0}-c, t_{0}+c\right)$,

$$
\begin{equation*}
\left|\phi(u)(t)-y_{0}\right| \leq M\left|t-t_{0}\right| \leq M c \leq R . \tag{3}
\end{equation*}
$$

Thus $\phi(u) \in \mathcal{C}\left(\left(t_{0}-c, t_{0}+c\right), \bar{B}_{R}\left(y_{0}\right)\right)$. Moreover, ϕ is a contraction because

$$
\begin{align*}
|\phi(u)(t)-\phi(v)(t)| & \leq\left|\int_{t_{0}}^{t} F(t, u(t))-F(t, v(t)) d t\right| \\
& =\left|\int_{t_{0}}^{t} L\right| u(t)-v(t)|d t| \\
& \leq L\left|t-t_{0}\right|\|u-v\|_{\sup } \leq \frac{1}{2}\|u-v\|_{\text {sup }} \tag{4}
\end{align*}
$$

for all $t \in\left(t_{0}-c, t_{0}+c\right)$ and hence

$$
\|\phi(u)-\phi(v)\|_{\text {sup }} \leq \frac{1}{2}\|u-v\|_{\text {sup }}
$$

Thus by the contraction mapping theorem, ϕ has a unique fixed point, which, by (1), is the desired unique solution to (\star) in the interval $\left(t_{0}-c, t_{0}+\right.$ c).

Corollary 1. Suppose $F\left(t, y, x_{1}, \ldots, x_{m-1}\right)$, where $t, y, x_{i} \in \mathbf{R}$, is a real valued function defined in some neighborhood of the point $\left(t_{0}, y_{0}, y_{1}, \ldots, y_{m-1}\right) \in$ \mathbf{R}^{m+1}. If F continuous in all variables and Lipschitz in the variables $y, x_{1}, \ldots, x_{m-1}$, then the $m^{\text {th }}$-order O.D.E. initial value problem

$$
\begin{aligned}
\frac{d^{m} u}{d t^{m}} & =F\left(t, u, \frac{d u}{d t}, \ldots, \frac{d^{m-1} u}{d t^{m-1}}\right) \\
u\left(t_{0}\right) & =y_{0} \\
\frac{d u}{d t}\left(t_{0}\right) & =y_{1} \\
& \vdots \\
\frac{d^{m-1} u}{d t^{m-1}}\left(t_{0}\right) & =y_{m-1}
\end{aligned}
$$

has a unique solution near $\left(t_{0}, y_{0}, y_{1}, \ldots, y_{m-1}\right)$.

